
 

Wilson Lines

An interesting class of observables is the

one of line defectsloperators also called

Wilson lines
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Recall Holographic relation to 2D Crationa

conformal field theory
Ms Ex IR

742 finite dim E

space of
conformal blocks

of 2D CFT waw
R

Introducing Wilson lines to this picture
weget

D On 2 we decompose
D dt2 d and

WCHB A Ao IT
constraint F dFt Ako
without Wilson lines
solved by
II d UU

t U DxlR G



In terms of the U's the Chers sinuous

action becomes is the angular coordinate

on 3D
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The above action is invariant under

transformations on the boundary
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recover chiral version of WZ W model

invariance under F is global syn
inclusion of Wilson loops amounts

to

adding the following term to the action
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integrating out wett gives back

the Wilson loop Trapexpff A dt
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the constraint now becomes
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connection around P is determined

by the representation
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inserting into the CS action gives
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9 Conformal field theory and the

Jones polynomial

A link L is an embedding
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The image ofeach S is called link component
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A link L with one component is a knot

Let L L Uh be a link with two components
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A framing of a link L is an integer ng

for each component Li given by
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where Lj is a simple closed curve on the

boundary of a tubular neighborhood of Lj

nj I
Lj

Let L be an oriented framed link in pi

associate level k highest weight
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we split each L into elementary tanglesa
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To each q we associate a level K highest

weight
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consider space of conformal blocks
for Riemann sphere with points of sign

and highest weights as defined above
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Associate a linear map
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to each elementary tangle as follows
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and set V tj Va ai dit An
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Recall that Va an has basis
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inserting mi mi gives natural

identification Va a ai an Va aioniti Au
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