Wilson Lines:
An interesting class of observables is the one of "line defects/operators", also called "Wilson lines":

oriented loop $\gamma \hookrightarrow M_{3}$, rep. $R$ of $G$

$$
\begin{aligned}
& \rightarrow W(R, \gamma)=\operatorname{Tr}_{R}\left(P \exp \oint_{\gamma} A\right) \\
& \left\langle\prod_{\alpha} W\left(R_{\alpha}, \gamma_{\alpha}\right)\right\rangle=\int_{\phi / G} D A \prod_{\alpha} W\left(R_{\alpha}, \gamma_{\alpha}\right) e^{2 \pi i c s(A)}
\end{aligned}
$$

The $\gamma_{\alpha}$ could form a link or knot:


$$
\begin{aligned}
& G=\operatorname{su}(2) \\
& \rightarrow\langle W(\underline{2}, \gamma)\rangle_{M_{3}=s^{3}}=\text { polynomial in } \\
& \quad q=e^{\frac{2 \pi i}{k+2}}
\end{aligned}
$$

"Jones polynomial
Recall "Holographic" relation to 2D (rational) conformal field theory:

$$
M_{3}=\sum \times \mathbb{R}
$$

$\mathcal{H}(\Sigma)$ finite dim. space of "conformal blocks"
 of $2 D$ FT (WOW)
Introducing Wilson lines to this picture, we get


On $\Sigma$ we decompose $d=d t \frac{\partial}{\partial t}+\tilde{d}$ and $A=A_{0}+\tilde{A}$
$\rightarrow$ constraint: $\tilde{F}=\tilde{d} \widetilde{A}+\tilde{A}^{2}=0$ (without wilson liens)
$\rightarrow$ solved by:

$$
\widetilde{A}=-\tilde{d} u u^{-1}, u: D \times \mathbb{R} \rightarrow G
$$

In terms of the $U^{\prime} s$ the Chers-Simons action becomes ( $\phi$ is the angular coordinate on $\partial D)$ :

$$
\begin{align*}
2 \pi C S(A) & \rightarrow \frac{K}{2 \pi} \int_{\partial M_{3}} \operatorname{Tr}\left(U^{-1} \partial_{\phi} U U^{-1} \partial_{t} U\right) d \phi d t \\
& +\frac{k}{12 \pi} \int_{M_{3}} \operatorname{Tr}\left(u^{-1} d u\right)^{3} \tag{*}
\end{align*}
$$

The above action is invariant under transformations on the boundary:

$$
U(\phi, t) \longmapsto \widetilde{V}(\phi) U V(t) \quad(\text { exercise })
$$

$(*) \longrightarrow$ recover chiral version of $W Z W$ model (invariance under $\widetilde{V}$ is global sym.) inclusion of Wilson loops amounts to adding the following term to the action:

$$
\int d t \operatorname{Tr} \lambda \omega^{-1}\left(\partial_{0}+A_{0}\right) \omega(t)
$$

where $\lambda=\vec{\lambda} \cdot \vec{H}$ is a weight and the action has gauge invariance $\omega(t) \longmapsto \omega(t) h(t)$
$\rightarrow$ integrating out $\omega(t)$ gives back the Wilson loop $T_{r_{n}} P \exp \left(\int_{t} A_{0} d t\right)$ (arxiv/1401.6167)
$\rightarrow$ the constraint now becomes:

$$
\frac{k}{2 \pi} \widetilde{F}(x)+\omega(t) \lambda \omega^{-1}(t) \delta^{(2)}(x-P)=0
$$

position of wilson
$\rightarrow$ solved by line on $D$.

$$
\tilde{A}=-\tilde{d} \tilde{u} \tilde{u}^{-1}
$$

where $\tilde{u}=u \exp \left(\frac{1}{k} \omega(t) \lambda \omega^{-1}(t) \phi\right)$
where $U$ commutes with $\omega(f) \lambda \omega^{-1}(f)$
$\rightarrow$ conjugacy class of holonomy of flat connection around $P$ is determined by the representation of $P$.
inserting into the CS-action gives:

$$
\operatorname{Cs}(A) \rightarrow k S_{\operatorname{cwzw}}(U)+\frac{1}{2 \pi} \int_{\partial M} T_{r} \lambda U^{-1} \partial_{0} U(* x)
$$

$\rightarrow$ invariant under

$$
\begin{aligned}
& \text { under } \\
& U(\phi, t) \mapsto \nabla(\phi) U v(t)
\end{aligned}
$$

where $V(f)$ commutes with $\lambda$
Quantization of $(* x)$ gives integrable highest weight module $H^{(\lambda}$.
§9. Conformal field theory and the
Tones polynomial
A "link" $L$ is an embedding

$$
f: S^{\prime} \cup \cdots \cup S^{\prime} \rightarrow S^{3}
$$

The image of each $S$ ' is called "link component"

$$
\rightarrow L=L, \cup L_{2} \cdots U L_{m}
$$

A link $L$ with one component is a "Knot".
Let $L=L_{1} \cup L_{2}$ be a link with two components
The "likinging number" $l k\left(L_{1}, L_{2}\right)$ is the intersection number of an oriented surface $\sum_{1}$ in $S^{3}$ st. $\partial \Sigma_{1}=L_{1}$ with $L_{2}$


$$
l k\left(L_{1}, L_{2}\right)
$$

$=\frac{1}{2}$ (\#positive crossings - \#negative crossings)


A "framing" of a link $L$ is an integer $n_{j}$. for each component $L_{i}$ given by

$$
n_{j}=l k\left(L_{j}, L_{j}^{\prime}\right)
$$

where $L_{j}^{\prime}$ is a simple closed curve on the boundary of a tubular neighborhood of $L_{j}$.

$$
\frac{L_{j}}{L_{j}}+1 / 1 / 11 / 111 / 1 / 1 / 1 /, \quad \rightarrow n_{j}=1
$$

Let $L$ be an oriented framed link in $\mathbb{R}^{3}$.
$\rightarrow$ associate level $K$ highest weights $\lambda_{1}, \ldots, \lambda_{m}$ to $L_{1}, \ldots, L_{m}$
We split each $L$ into "elementary tangles":


To each $q_{i}$ we associate a level $k$ highest weight:

at $t_{j}$
$\longrightarrow$ consider space of conformal blocks for Riemann sphere with points $q_{1}, \ldots, q_{n}$ and highest weights as defined above

$$
\longrightarrow V\left(t_{j^{-}}\right)
$$

in particular: $V\left(t_{0}\right)=V\left(t_{s}\right)=\mathbb{C}$
Associate a linear map:

$$
Z_{j}: V\left(t_{j}\right) \rightarrow V\left(t_{j+1}\right), \quad 0 \leqslant j \leqslant s-1
$$

to each elementary tangle as follows:
(1) $\sigma_{i}, \sigma_{i}^{-1} \rightarrow$ holonomy of $k z$ equation
(2) for maximal/minimal points define

and set $V\left(t_{j}\right)=V_{\lambda} \ldots \lambda_{i} \lambda_{i+1} \ldots \lambda_{n}$

$$
V\left(t_{j+1}\right)=V_{\lambda_{1}} \cdots \lambda_{i} \lambda \lambda^{*} \lambda_{i+1} \ldots \lambda_{n}
$$

Recall that $V_{\lambda_{1}} \cdots \lambda_{n}$ has basis

inserting $\left.\mu_{i}\right|^{0} \mu_{i}$ gives natural identification $V_{\lambda_{1} \ldots \lambda_{i} \lambda_{i+1} \cdots \lambda_{n} \cong V_{\lambda_{1}} \cdots \lambda_{i} \circ \lambda_{i+1} \cdots \lambda_{n}}$ defined by $v_{\mu_{0}} \ldots \mu_{i}--\mu_{n} \mapsto v_{\mu_{0}} \ldots \mu_{i} \mu_{i} \ldots \mu_{n}$ Now define $Z_{j}: V\left(t_{j}\right) \rightarrow V\left(t_{j+1}\right)$ by

$$
v_{\mu_{0} \cdots \mu_{i} \mu_{i} \cdots \mu_{n}} \longmapsto \sum_{\mu} F_{\mu_{0}} v_{\mu_{0} \cdots \mu_{i} \mu_{\mu_{i}} \cdots \mu_{n}}
$$

where


Composing the above linear maps $Z_{j}, 0 \leqslant j \leqslant s-1$ we get $Z\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)=Z_{s-1} \circ \ldots \circ Z_{1} \circ Z_{0}(1)$

