Wilson Lines: An interesting class of observables is the one of "line defects /operators", also called "Wilson lines" oriented loop Y ~> M3, rep. R of G $\rightarrow W(R, \gamma) := \operatorname{Tr}_{R}(\operatorname{Pexp} \varphi A)$ $\langle \prod_{\alpha} W(R_{\alpha}, \gamma_{\alpha}) \rangle = \int \mathcal{D}A \prod_{\alpha} W(R_{\alpha}, \gamma_{\alpha}) e^{2\pi i CS(A)}$ $\frac{\phi}{Q}$ The γ_{α} could form a link or knot: γ Y_1 link Knot

$$G = SU(2)$$

$$\rightarrow \langle W(2, N) \rangle_{M_3} = S^3 = polynomial in
q = e^{\frac{2\pi i}{R_{M2}}}$$
"Jones polynomial"

Recall "Holographic" relation to 2D (rational)
conformal field theory:

 $M_2 = \sum \times \mathbb{R}$

 $\mathcal{H}(Z)$ finite dim.

space of

"conformal blacks"

 $f = 2D \ CFT \ (W2W)$

Tutroducing Wilson lines to this picture, we get

 $M_2 = \sum Z = D$

 $M_2 = \sum X \mathbb{R}$

 $M_2 =$

In terms of the U's the Chers-Simons action becomes (& is the angular coordinate on DD): $2\pi CS(A) \rightarrow \frac{K}{2\pi} \int Tr(U' \partial_{\phi} U U' \partial_{t} U) d\phi dt$ + $\frac{k}{12\pi}\int_{M_{2}} Tr(U'dU)^{3}$ (*) The above action is invariant under transformations on the boundary: $\mathcal{U}(\phi, t) \longmapsto \widetilde{\mathcal{V}}(\phi) \, \mathcal{U} \, \mathcal{V}(t) \quad (\text{exercise})$ (*) -> recover chiral version of WZW model (invariance under V is global sym.) inclusion of Wilson loops amounts to adding the following term to the action. $\int dt \, \mathrm{Tr} \, \mathcal{N} \, \omega^{-1} (\mathcal{D}_{0} + A_{0}) \, \omega(t)$ where $\Lambda = \vec{\lambda} \cdot \vec{H}$ is a weight and the action has gauge invariance $\omega(t) \longrightarrow \omega(t)h(t)$

→ integrating out w(t) gives back
the Wilson loop Tr_{Rn} Peqp(∫ A.dt)
(arxiv/1401.6167)
→ the constraint now becomes:

$$\frac{k}{2\pi}$$
 F(x) + w(t) 2w⁻¹(t) S⁽²³(x-P) = 6
position of Wilson
F(x) + w(t) 2w⁻¹(t) S⁽²³(x-P) = 6
→ solved by Position of Wilson
A = - & U(t)⁻¹
where U = U exp($\frac{1}{k}$ w(t) 2w⁻¹(t) 4)
where U = U exp($\frac{1}{k}$ w(t) 2w⁻¹(t) 4)
where U commutes with w(t) 2w⁻¹(t)
→ conjugacy class of holonomy of flat
connection around P is determined
by the representation at P.
inserting into the CS-action gives:
CS(A) → K Scurw(U) + $\frac{1}{2\pi}$ STr 2U²∂U (**)
→ invariant undar
U(4, t) → U(4) UV(t)
where V(t) commutes with 2
Quantization of (**) gives integrable highest weight
module HQ.

S9. Conformal field theory and the
Jones polynomial
A "link" L is an embedding

$$f: S' \cup \cdots \cup S' \rightarrow S^{3}$$

The image of each S' is called "link component"
 $\rightarrow L = L, \cup L_{2} \cdots \cup L_{m}$
A link L with one component is a "Knot".
Zet $L = L, \cup L_{2} \cdots \cup L_{m}$
The "likinging number" $lk(L_{1,L_{2}})$ is the
intersection number of an ariented surface Σ_{1}
in S³ s.t. $\partial \Sigma_{1} = L$, with L_{2}
 $L_{1} = \sum_{i=1}^{1} (\mu positive crossings)$
 $L_{2} = \sum_{i=1}^{1} (\mu positive crossings)$
 $L_{2} = \sum_{i=1}^{1} (\mu positive crossings)$